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Experimental studies of positron and positronium decay in dense fluids suggest that these particles are
capable of forming self-trapped states in some fluids in a broad region of temperature and density sur-
rounding the liquid-vapor critical point. A central question in understanding the phenomena is whether
the light particle (Ip) actively creates a static potential well in the fluid in which it localizes, or randomly
visits favorable fluctuations. The fact that the experimental measurements yield a single, well-defined de-
cay rate for each decay mode suggests that the environment of the lp is static. Earlier mean-field
theories could not shed much light on this question. However, two recent applications of quantum
Monte Carlo methods show that substantial fluctuations occur in the Ip environment. In this paper, the
distribution of fluctuations is described. It is shown that the apparent conflict is resolved if the time
scale for fluctuations in the environment is much shorter than the duration of each measurement, and es-
timates for the different relaxation processes are provided.

PACS number(s): 61.20.—p, 36.10.Dr

INTRODUCTION

It has been known for some time that an excess light
particle (electron, positron, or positronium atom) which
has thermalized in a fluid can become localized [1]. In
contrast with the usual Anderson picture, localization
occurs here because the light particle can influence its lo-
cal environment, resulting in the name self-trapping [2].
The classic example of self-trapping is provided by the
behavior of a positron, or positronium atom, in dense He
gas at about 6 K [3]. The annihilation rate of each parti-
cle depends strongly on the density p [4]. At low densi-
ties, the decay rates of et and orthopositronium (o-Ps)
increase linearly with p simply because of the increased
availability of electrons. (Because of the long vacuum
lifetime of orthopositronium, its positron can annihilate
via the pickoff process with a nearby atomic electron [4].)
At a critical value, the annihilation rate of the positron
increases almost discontinuously while, at a different
value, that of the positronium suddenly levels off. Each
of these strong departures from linearity is brought about
by the sudden change in the number of available elec-
trons which occurs upon localization: For the positron
this results from the formation of a droplet of the fluid in
its vicinity due to the attractive interaction with the fluid
resulting from polarization. In contrast, the fermionic
repulsion between the positronium and fluid atoms re-
sults in the formation of a bubble. It has been conjec-
tured that localization occurs when the light particle
finds an energetically favorable fluctuation in the fluid
which it then stabilizes.

The earliest, and crudest, theoretical models for these
classic experiments simply assumed that the droplet, or
bubble, had a constant atomic density. When averaged
over an ensemble this resulted in a spherical potential
well whose ground state is occupied by the localized light
particle [5]. Considerable improvements in this picture,
e.g., introducing a continuously varying local density, led
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to a description which adequately represented the experi-
mental measurements [6,7]. It was shown that a suitable
free-energy density functional could be constructed in
terms of ¥(r), the local light-particle wave function, and
p(r), the local fluid density. Minimizing the free energy
resulted in two coupled equations for ¢(r) and p(r) which
define the localized state. Since ¥(r) and p(r) represent
average quantities which result in nonuniform fluid struc-
tures with diameters of about 20 A, this model is essen-
tially mesoscopic. Thus it was possible to explain the
helium experiments [3] in terms of a model based on a
single dominant mesoscopic state.

Density-functional theory (DFT) supports the concept
that the self-trapped state is dominant over a specific re-
gion of thermodynamic states (defined, say, by the aver-
age density and temperature of the fluid), and suddenly
disappears when the region boundary is traversed. Out-
side of this preferred region, the coupled equations which
self-consistently determine the localized state only admit
to extended solutions. Thus the model is consistent with
the experimental observation that the trapped state forms
suddenly. In many ways, the transition from extended to
localized state is reminiscent of a phase transition and it
has been pointed out elsewhere that the mesoscopic am-
plitude ¥ may be regarded as an order parameter [8].

Following these classic experiments [3], positron and
positronium decay were also studied in other noble gases
(e.g., argon [9] and xenon [10]) above their critical-point
temperature. At these higher temperatures, the variation
of decay rate with density on a given isotherm was
markedly different than for the earlier work on helium.
Although some gases still exhibited the general charac-
teristics of droplet or bubble formation, the variation of
decay rate was smooth and did not display a sharp transi-
tion.

Attempts were made to apply DFT to these gases as
well, but the results were not so satisfying [9-12]. In
general, at these higher temperatures, the fits to experi-
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‘mental data were superior for the case of positrons rather
than for positronium. Even at the high temperatures
considered, DFT still predicted a dominant, localized
state in a particular density range. In common with the
case for helium, the predictions still changed suddenly
with the onset of localization. However, the variation of
the experimental decay rates with density were all re-
markably smooth and did not exhibit the sudden changes
of slope described earlier. As before, they suggested that
atomic clustering could occur in the neighborhood of the
localized positron and that a cavity surrounded the posi-
tronium atom. However, the theoretical curves in the
case of positronium were essentially independent of den-
sity (flat) in the trapping region [12], whereas the experi-
mental curves increased monotonically.

Sharma and McNutt developed an alternative model
based on the idea that an “intelligent” Ip selects locations
in the fluids where local-density fluctuations favor its ex-
istence [13]. Their semiphenomenological approach has
been successfully applied to the analysis of 0-Ps decay in
a number of fluids at low density [9,14]. Its failure to
correctly model data in the critical region was typically
interpreted as confirmation that the lp is localized.

COMPARISON OF MODELS

DFT results in the computation of a single, optimal, lo-
calized state for the lp-fluid system. Consequently it is a
mean-field theory and provides no information concern-
ing fluctuations in the important physical quantities, such
as the local density and the annihilation rate. Because its
sole output is a single system state, it is easy to become
seduced into believing that this state has a physical reali-
ty, i.e., that the lp truly sees a static local density which is
successfully modeled by DFT. This picture is further
supported by the ease with which experimentalists are
able to assign specific annihilation rates to each decay
mode. It can be argued that, if fluctuations in the Ip envi-
ronment are large, then there should be experimental
ramifications such as the observation of a continuous dis-
tribution of lifetimes. This type of behavior has been ob-
served in polymers, where the positron becomes localized
in a rigid pore, or region of free volume [15,16]. The con-
tinuous distribution in pore sizes, or free volumes, results
in a corresponding distribution of experimental lifetimes.
It is surprising that this behavior is not observed in fluids.
The question of whether or not this is a consequence of
the absence of large local fluctuations has never been con-
clusively resolved.

The ideal physical system which DFT tries to emulate
is the adiabatic model, in which the lp degrees of freedom
are treated via quantum mechanics and the fluid degrees
of freedom are treated classically. The Ip interacts with a
fluid atom located at R; via a pairwise interaction poten-
tial, say, w(x—Rj ). In the past decade it has become
possible to model this system directly, without invoking
the further approximations asserted by DFT. The
method used is referred to as quantum Monte Carlo
(QMCQC), and is based on the discretized imaginary-time
path-integral representation of the Ip [17]. In QMC the
quantum lIp is represented by a fictitious classical ring po-
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lymer containing p sites with nearest-neighbor harmonic
interactions characterized by a temperature-dependent
force constant given by 4mp /%232,

Each site a of the polymer interacts with every fluid
atom through the scaled down potential w(x,—R;)/p.
Thus, in the canonical ensemble, the probability density
of the lp-fluid configuration space is given by

(1/Z)exp[ —BU(R)—BP(x,R)] , 1)

where

q)(L,L)E 2 [(Zmp/32ﬁ2)|xa+l—xa|2

1<a<p
+(1/p)W(x,R)] ()

and U(R) is the interatomic potential energy of the
atoms with positions {R;}=R. In the limit p— 0, the
equivalence is exact. During the last decade, QMC has
been extensively applied to the behavior of an excess
thermalized electron [18]. In some treatments, the effects
of induced polarization of the fluid atoms have been con-
sidered explicitly [19].

The mean spatial extent of the polymer indicates the
degree of localization of the lp. As expected, in the ab-
sence of the lp-atom interaction, it is on the order of the
thermal wavelength. A localized lp is characterized by a
strongly clumped polymer. Except for nearest neighbors,
the mean distance between an arbitrary pair of polymer
sites is nearly constant and independent of their relative
position on the chain. An extended state is characterized
by a unimodal distribution of site-site separations which
is strongly peaked around symmetrically opposed sites.
The fluid structure in the neighborhood of the lp is
effectively investigated by constructing the site-atom and
polymer center-atom radial distribution functions. Ex-
cept for a small region near an atomic center where the
repulsive interaction is strongest, at high temperatures
these functions are nearly unity, indicating little or no
Ip-atom correlation. As the temperature is lowered, the
range of correlation grows, suggesting that the lp is
influencing its surroundings. It is greatest in the vicinity
of the critical point, where the large compressibility of
the fluid results in a strong response to the external per-
turbation produced by the Ip [20].

In QMC, the mean values of physical observables can
be expressed in terms of the appropriate polymer-atom
correlation functions. For example, using appropriate
units, the mean annihilation rate of a thermalized posi-
tron is given by

<}\,):Pfdrfe1(r)gpp(r) ’ (3)

where f,(r) is the electron density a distance r from an
atom, p is the average fluid density, and ggp(7) is the
polymer site-atom radial distribution function [21]. Simi-
larly, the variance of A can be expressed in terms of both
two- and three-point correlations [21]. The same correla-
tions are required for evaluating the pickoff decay rate of
0-Ps. However, here the internal state of the o-Ps atom
must also be known because it is a composite particle and
the path integral only represents its center of mass [22].
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In contrast with DFT, which suggests that localized
states occur suddenly, and only exist within definite re-
gions of the fluid parameters, QMC demonstrates that, at
finite temperature, the degree of localization varies con-
tinuously with density. Recently, in two separate studies,
QMC has been applied both to the problem of an excess
positron [23] and an excess orthopositronium atom [22],
which have thermalized in a fluid. The fluid was modeled
by the Lennard-Jones (6,12) pair potential. Because ex-
periments on positron and positronium lifetimes in xenon
have disclosed an unusually large positron annihilation
rate [10], the values of the parameters were chosen to
represent xenon. In each study, specific isotherms were
selected for their experimental interest. QMC was used
to theoretically investigate the mean decay rate as a func-
tion of density on the isotherms chosen for each particle
and compared with the observations.

These calculations showed improved agreement with
the experimental measurements. They were especially
good in modeling the region of transition away from
linear density dependence, where major difficulties are en-
countered with DFT. Although the predictions must still
be termed as qualitative due to the lack of reliable Ip-
atom interaction potentials, for the positron this situation
is rapidly changing and ab initio calculations of effective
positron-atom functions are finally becoming available
[24].

ANALYSIS OF FLUCTUATIONS

In addition to determining the average annihilation
rates at a specified density and temperature, the path-
integral Monte Carlo computations were used to simul-
taneously generate the complete decay-rate equilibrium
distribution. This is not possible with the earlier models
since they are mean-field theories and, for the first time,
provides the opportunity to answer questions concerning
the constancy of the 1p’s environment.

Histograms representing the decay-rate distribution of
e’ and o-Ps at 340 K are displayed in Figs. 1-4 for a
range of densities. A few general observations are in or-
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FIG. 1. Annihilation rate histogram for positrons thermal-
ized in xenon at low density. The concentration of values near
A =0 occurs because of the large number of evacuated regions at
this density.
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FIG. 2. Annihilation rate histogram for positrons thermal-
ized in xenon at moderate density. Although atomic clustering
about the positron is extensive at this density, the fluctuations in
A are still large.

der: (i) in each case the relative width of the distribution
is of order unity; (i) in each case, the width is greater at
lower density; and (iii) at higher density, the width is
greater for o-Ps. It is clear that these distributions are to-
tally different from those representing macroscopic quan-
tities, where the relative width is of order f ~'/2, where f
is the number of degrees of freedom of the system. It is
convenient to characterize them by their relative disper-
sion £, =0,/{A), where o is the variance of the decay
rate calculated for each distribution. For o-Ps in xenon
at 340 K, 0.83>¢,>0.44 for dimensionless density
p*=po? in the range 0.017 <p* <0.35 [22]. o is simply
the Lennard-Jones length parameter (the value of r for
which the potential vanishes); the value of p* at the criti-
cal density is close to 0.35. For e™ in xenon at T'=340
K, 1.2>§,>0.18 for 0.01 <p* <0.5 [23].

These calculations clearly demonstrate that, in each
case, the local environment of the lp fluctuates strongly.
The question that needs to be addressed here is how these
large variations can be reconciled with the experimental
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FIG. 3. Annihilation rate histogram for orthopositronium
thermalized in xenon at low density. Again we see that o-Ps
prefers empty regions, and that the variation in A is large.
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FIG. 4. Annihilation rate histogram for orthopositronium
thermalized in xenon at the critical density. The large
compressibility of the fluid near the critical point may contrib-
ute to the large fluctuations observed.

results which yield a single, easily resolved, annihilation
rate for each particle.

For a positron, the annihilation rate is represented by
the quantum-mechanical operator [21],

A= 3 fax—R;). 4)

1<j<N

It has been pointed out by Percus that the quantity that is
actually measured in the laboratory is the mean value of
P (1), the probability of survival at time ¢ [8]. Since the
annihilation process is Markovian, for a given positron
(or positronium atom),

P=exp |~ [ Menar |, (5)

where here A(?) is the quantum average of the instantane-
ous annihilation rate experienced by the unstable particle,
AMe)={(t)|R|¥(r)), and we have conditioned on the
complete initial state of the Ip-fluid system at the initial
time ¢t =0. To determine under what conditions an ex-
periment should yield a single value for A, let (A)
represent the mean annihilation rate as above and let
S8A(t) denote its fluctuation at time ¢z. Then

Pi=exp [~ (1)~ [srtrar’ | ©)

and its average is given by

(P(t))=exp[ —(A)t] [1+(%)fotdt'fotdtnck(t'_t”)} )

(7

where, in (7), we have expanded through second order in
8A and ¢, (7)=(8A(7)8A(0)) is the decay-rate autocorre-
lation function. Taking the logarithm of each side, we
find

In(P(0)y=— (Wt +() [ ar [ e, =t . @

Thus we need to consider the circumstances where the
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second term on the right can be neglected. This can
occur in two ways. First, if ¢; is very small, only the
mean value of A(z) will be detected. However, we have
already demonstrated from QMC that ¢, (0) is of order
{A)? so this doesn’t apply. Second, c,(7) may become
vanishingly small for times 7 much shorter than
t=~1/(A), the time of observation. These issues may be
clarified by (i) writing c¢,(7)=c¢,(0)f(7); (ii) noting that
¢, (0)=02=(A)?£2; and (iii) transforming the variables
of integration in (8) to 7=¢'—¢"" and t,=(¢'+1¢t")/2. In
terms of these quantities (8) takes the form

In(P(1) ==t + WG [drfa—Ieh.  ©

For simplicity, assume that c,(7) decays exponentially
(f(r)=exp(—7/7,)) to obtain

In(P(2))=— (At +{A)*5tm;
X{1=(r /) 1—exp(—t/7))]} - (10)

Since (A)t=~1, the condition which must be satisfied if
the fluctuations don’t contribute measurably to the obser-
vations is

Ex (/01 —(1 /t)[1—exp(—t /7;)]} <<1 . (11)

However, as noted above, the path-integral studies yield
£2~1, so this criterion (11) can be satisfied only if
73/t <<1. We consider this possibility below.

Because A(7) depends on the atomic positions {R,(#)},
we assume that its evolution is slaved to the evolution of
density fluctuations in the fluid. For simplicity let’s as-
sume the relaxation time 7, is essentially that of the fluc-
tuation which it has stabilized. For both e™ and o-Ps,
QMC indicates that the diameter of the disturbed region
in the fluid, for which gp is different than unity, is on the
order of 20 A. In the case of e *, a dense droplet is creat-
ed in its vicinity [22]. Thus a good estimate of 7, for the
positron should be the time required for an atom to
diffuse 20 A in the dense fluid. In contrast, a cavity is
created around o-Ps which is nearly vacant [21]. An esti-
mate of the relaxation time of this structure is approxi-
mately the time for an atom to ballistically traverse the
cavity. Consequently, the relaxation time for o-Ps is ex-
pected to be much less than that for e *.

There are a number of reports of experimental mea-
surements of the diffusion constant of atomic xenon. In a
recent study, values are reported in the density range of
interest [25]. An examination of the data indicates
that the diffusion constant of xenon varies slowly
with the thermodynamic parameters in a region above
the critical density and temperature with a value of
approximately D ~2.0X 107 m?s™!, which yields
7,~(20 A)?/D~0.2 ns. Now typical values of
(L)'=t for e™ annihilation in Xe at 300 K range from
about 0.7 to 2.0 ns, yielding 0.1 <7, /t <0.25. For the
case of positronium, (1) “!~t is of much longer dura-
tion, since the vacuum lifetime of 0-Ps is about 140 ns. In
addition, the relaxation time is controlled by ballistic
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motion, which is much more rapid than diffusion. Conse-
quently, 7, /t <<1 for o-Ps decay.

CONCLUSIONS

In summary, although light particles show a tendency
to localize in dense gases above the critical temperature,
recent QMC studies confirm the existence of large statist-
ical fluctuations in their environment [22,23]. This
demonstrates that the concerns expressed frequently by
Sharma [26] with the view that the localized Ip sits in a
rather static environment are justified. The Monte Carlo
calculations appear to be in conflict with the experimen-
tal lifetime measurements, which yield a single, well-
defined lifetime for each decay mode. By combining the
information which has just become available concerning
the size of the relevant statistical fluctuations with “back
of the envelope” estimates of the fluctuation relaxation
times, we have shown that, for the case of positronium,
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the conflict is resolved because the time of observation,
which is roughly the lifetime, is much longer than the ap-
propriate relaxation time. Consequently, the fluctuations
in lifetime occur too rapidly to be observed. However,
for the bare positron, the separation of time scales is only
marginal. Experimentalists may view this statement as a
challenge to detect a measurable lifetime distribution.
Theorists and computer modelers may wish to improve
on the rough estimates given here to more accurately fix
the relaxation times.
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